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Abstract 

This paper numerically analyzes MHD stagnation point flow of Casson 

nanofluid over a linear stretching sheet with the effect of viscous dissipation . 

The governing equations of the problem are transformed into non-linear 

ordinary differential equations by using similarity transformations. The 

resulting equations are solved numerically by using an implicit   finite 

difference method known as Keller Box method. The effect of various 

physical parameters on the dimensionless velocity, dimensionless temperature 

and dimensionless concentration profile are showed graphically and discussed 

for the relative parameters. Present results are comparisons have been made 

with previously published work and results are found to be very good 

agreement. Numerical results for local skin friction, local Nusselt number and 

local Sherwood number are tabulated for various   physical parameters.  

Keywords:  MHD, Stagnation-point, Linear stretching sheet, Viscous 

dissipation, Casson nanofluid. 
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NOMENCLATURE: 

a  constant acceleration parameter 

0B  
magnetic field 

T  
Temperature of the fluid in the boundary layer 

C  concentration of the fluid in the boundary layer 

wT  
stretching surface temperature 

wC  
stretching surface concentration 

T  
Ambient fluid temperature 

C  
Ambient fluid concentration 

u  velocity component along x-axis  

v  velocity component along  y-axis 

wu  velocity component at the wall 

wv  velocity component at the wall 

  kinematic viscosity 

  Density of fluid 

  Thermal diffusivity 

BD  
Brownian diffusion coefficient 

TD  
Thermophoresis diffusion coefficient 

k  
Thermal conductivity 

Ec  Eckert number 

M  
Magnetic parameter 

Pr  
Prandtl number 

Nb  
Brownian motion parameter 

Nt  
Thermophoresis parameter 

Le  
Lewis number 

  
Casson parameter 

  
Velocity ratio parameter 

xCf  
Local skin friction coefficient 

xNu  
Local Nusselt number 

xSh  
Local Sherwood number 

 

1. INTRODUCTION:  

Real fluids are two types namely Newtonian and Non-Newtonian fluid .A fluid obey 

the Newton law of viscosity is Newtonian fluid ,otherwise it is Non-Newtonian fluid. 

Many fluids in industries resemble non-Newtonian behavior. In non-Newtonian 

fluids, the relationship between stress and the rate of strain is not linear. Due to non-

linearity between the stress and rate of strain for non-Newtonian fluids it is difficult to 

express all those properties of several non-Newtonian fluids in a single constitutive 
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equation. This has called on the attention of researchers to analyze the flow dynamics 

of non-Newtonian fluids. Consequently several non-Newtonian fluid models [22-27] 

have been proposed depending on various physical parameters.  In 1959 , Casson 

introduced Casson fluid model. If the shear stress is less than the applied yield stress 

on the fluid then Casson fluid act as a solid. If the shear stress is greater than the 

applied yield stresses then it act as a liquid. Fluids like honey, blood, soup, jelly, 

stuffs, slurries, artificial fibers are some Casson fluids. Krishnendu 

Bhattacharya[5]investigated  MHD stagnation point flow of casson fluid and heat 

transfer over a stretching sheet in the presence of thermal radiation, in his observation 

the velocity boundary layer thickness for Casson fluid is larger than that of Newtonian 

fluid, the thermal boundary layer thickness decreases when Casson parameter 

decreases for β<1 and  increases when  thickness increase for β>1.Ibukum Sarah 

Oyelkkin et.al[10] studied  numerically the effects of thermal radiation ,heat 

generation and  combined effect of Soret and Dufour numbers on the Casson 

nanofluid over  a unsteady stretching  sheet by using Spectral Relaxation 

method.T.Vijayalaxmi et.al[14] analyzed the effects of inclined magnetic field ,partial 

velocity slip and chemical reaction on casson nano fluid over a nonlinear stretching 

sheet  and observed their study ,increasing the values of Casson parameter  leads to 

decreasing velocity profile but it is reverse in the case  of temperature  profile. Several 

other studies have addressed various aspects of Casson fluid[16-20]. 

Stagnation point is a point in the flow field where the local velocity of fluid particle is 

zero. The flow near stagnation point has attracted the attention of many investigators 

during the past several decades, in view of its wide range of applications such as 

cooling of nuclear reactors of electronic devices by fans and many hydrodynamic 

processes. Mahapatra and Gupta [1&28] investigated   the heat transfer effect on 

stagnation point flow towards a stretching sheet in the presence of viscous dissipation 

effect. Later they studied the influence of heat transfer stagnation point flow past a 

stretching sheet. In their study ,boundary layer is formed when the stretching velocity 

less than a  free stream velocity and  an inverted boundary layer is formed when the 

stretching velocity exceeds the free stream velocity. Wubshet Ibrahim .et.al [2] 

investigated numerically by using Runge-Kutta fourth order method ,heat transfer 

characteristics of  nanofluid in the presence of magnetic field at near to stagnation 

point flow over a stretching sheet. Hayat .et.al [3] analyzed MHD flow of micro polar 

fluid near a stagnation point towards a nonlinear stretching sheet. Imran  Anwar .et.al 

[6] numerically studied MHD stagnation-point flow of a nanofluid over an 

exponential stretching sheet with the effect of radiation by using Keller Box method.   

Mohd  Hafizi Mat Yasin [9] used the Runge-Kutta Fehlberg methodof solution to 

study the steady two dimension stagnation –point flow over a permeable stretching 

sheet and heat transfer  in the presence of  magnetic field with the effects of viscous 

dissipation , joul heating and partial velocity slip.Several other studies have addressed 

various aspects of  MHD stagnation-point flow of fluids[5,7,811,12,13&14]. 

The study of boundary layer flow over a stretching sheet has many applications in 

industrial processes such as paper production, wire drawing ,glass fiber production 

etc. Steady laminar flow and heat transfer of a nanofluid over a flat plate surface is 
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numerically investigated by Rana and Bhargava [4].Winifred Nduku Mutuku [7] 

studied MHD bounadary layer flow of nanofluid with effect of viscous dissipation and 

observed that local Sherwood number increases with an increase in Eckert number 

.Dufour and soret effects on heat and mass transfer of a Casson nanofluid was 

invstigated by Ibukun Sarah Oyelakin[10].   

Motivated by above investigations on casson nanofluid  and its wide applications ,the 

objective of the present study is to analyze MHD stagnation –point flow over  a 

stretching sheet with the effect of viscous dissipation .In addition to this ,the effects of 

governing parameters such as magnetic parameter,velocity ratio parameter,Eckert 

number,Prandtl number ,Lewis number ,Brownian motion parameter,Thermophorosis 

parameter and casson parameters also analysed.   

 

2. MATHEMATICAL FORMULATION:     

Consider a two dimensional steady,viscous  and incompressible  MHD stagnation  

point flow of  Casson nanofluid over a  linear stretching sheet with the plane y=0 and 

the being confirmed to y>0 and y  coordinate is normal to the plane/sheet under the 

effect of viscous dissipation kept at a constant temperature Tw and concentration Cw. 

The ambient temperature and concentration are T∞ and C∞ respectively. The velocity 

of the stretching sheet is axxuw )(   (where a > 0 is the constant acceleration 

parameter) and the velocity of the ambient fluid is U∞=bx (where b>0).  The fluid is 

electrically conducting under the influence of magnetic field B(x)=B0 normal to the 

stretching sheet. The induced magnetic field is assumed to be small compared to the 

applied magnetic field and is neglected. The physical flow and co-ordinate system is 

shown in the Fig.1.The rheological equation of state for an isotropic and 

incompressible flow of casson fluid [Nakamura and Sawada [14] ,Mustapaet.al[17]  is 

given by. 
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     Where µB and py are the plastic dynamic viscosity, yield stress of the fluid 

respectively. Similarly π is the product of the component of deformation rate with 

itself ,π = eij.eij, eij is the (i,j)-th component of the deformation rate and πc is a critical 

value of this product based on non –Newtonian model. 

  Under the above boundary conditions, the governing equations of boundary layer 

equations are  

 

The continuity equation            
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The momentum equation 
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The nanoparticle concentration equation 
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Where u,v are velocity components along x-axis and y-axis respectively.  

pCU ,,,, 
 ,    andDDc TBf ,,,  are, freestream velocity, Thermal 

diffusivity , kinematic viscosity ,mass density, specific heat , effective heat capacity 

of the nanoparticle material, heat capacity of the fluid, Brownian diffusion coefficient 

,thermophoresis diffusion coefficient,casson parameter and  a parameter defined as 

the ratio of effective heat capacity of the nanoparticle material to heat capacity of the 

fluid respectively. 

 
 

 The associated boundary conditions are  
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Introduce the following similarity transformations 
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Where   denotes stream function and is defined as  
x

v
y

u



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





,   and   f  is 

a dimensionless stream function,   is dimensionless concentration function and  is 

dimensionless temperature function and   is similarity variable. After using 

similarity transformations, the governing equations (2)-(4) are reduced to the ordinary 

differential equations as follows: 
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Where the governing parameters defined as: 
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Here EcandLeNtNbM ,,,Pr,,   denote Magnetic parameter, Prandtl number, 

Velocity ratioparameter, the Brownian motion parameter, the Thermophoresis 

parameter, the Lewis number and Eckert number respectively. 

The quantities of practical interest in this study Local skin friction co-efficient xCf ,  

the Local Nusselt number xNu  and  Local Sherwood number xSh which are defined 

as follows : 
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Where k is the thermal conductivity of the nanofluid and mw qq ,  are heat and mass 

fluxes at the surface respectively and define as follows 
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Substituting equations (6) into (12) and (13)  we obtain 
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xuw
x Re is the local Reynolds number 

 

3. NUMERICAL METHOD: 

The non linear ordinary differential equations (7)-(9) together with boundary 

conditions (10) are solved numerically by an implicit finite difference scheme namely 

the Keller box method as mentioned by Cebeci and Bradshaw 21. According to 

Vajravelu et al 22, to obtain the numerical solutions, the following steps are involved 

in this method. 

 Reduce the ordinary differential equations to a system of first order equations. 

 Write the difference equations for ordinary differential equations using central 

differences. 

 Linearize the algebraic equations by Newtons method, and write them in 

matrix vector form. 

 Solve the linear system by the block tri-diagonal elimination technique. 

The accuracy of the method is depends on the appropriate initial guesses. We made an 

initial guesses are as follows. 
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The choices of the above initial guesses depend on the convergence criteria and the 

transformed boundary conditions of equation (9) and (10). The step size 0.1 is used to 

obtain the numerical solution with four decimal place accuracy as the criterion of 

convergent. 

 

 

4. RESULT AND DISCUSSIONS:  

The nonlinear differential   Equations [7], [8] and [9] with boundary conditions [10] 

are solved numerically by using Implicit finite difference method known as Keller 

box method Cebeci and Bradsha21 and vajravelu.et.al22. Table I and II shows the 

comparison of the data produced by the present method and that T.Ray Mahapatra , 

AS.Gupta1 and T.Hayat,T.Javed and Z.Abbas 3  . The result show excellent agreement 

among data. 
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Table I.     The comparison of  vlues of Skin friction coefficient   0f    when 

999990,1Pr  andLeNtNbEcM  

 λ Present result Mahapatra[1] Hayat[3] 

0.01 0.9987 --- 0.9983 

0.1 0.9697 0.9694 0.96954 

0.2 0.9184 0.9181 0.91813 

0.5 0.6676 0.6673 0.66735 

2 2.0201 2.0175 2.01767 

3 4.7393 4.7293 4.72964 

 

Table II. Comparison of Nusselt number when  

9999990,1Pr  andLeNtNbEcM  

 

Pr 
λ Present Hayath[3] 

1 0.1 0.6020 0.6021 

 0.2 0.6244 0.6244 

 0.3 0.6473 0.6924 

1.5 0.1 0.7768 0.7768 

 0.2 0.7972 0.7971 

 0.3 0.8193 0.8193 

 

Table III. Computed the values of skin friction coefficient ,Local Nusselt number and      

Sherwood  number for various values parameters. 

Pr M λ Ec Nb Nt Le Β Skin 

fric 

Nusselt 

number 

Sherwood 

Number 

1 1 0.1 0.1 0.1 0.1 1 1 0.9342 0.4940 0.3266 

2        0.9342 0.6993 0.174 

3        0.9342 0.8367 0.0666 

 1 0.1 0.1 0.1 0.1 1 1 0.9342 0.4940 0.3266 

 2       1.1301 0.448 0.3199 

 3       1.2968 0.411 0.3186 

1 1 0.1 0.1 0.1 0.1 1 1 0.9342 0.4940 0.3266 

  0.5      0.5885 0.6222 0.3880 

  0.9      0.1301 0.7160 0.4389 

  1.3      0.424 0.7698 0.5071 

1 1 0.1 0.1 0.1 0.1 1 1 0.9342 0.4940 0.3266 

   0.5     0.9342 0.2186 0.5738 

   0.9     0.9342 0.0592 0.8215 

1 1 0.1 0.1 0.1 0.1 1 1 0.9342 0.4940 0.3266 

    0.2    0.9342 0.4665 0.4803 

    0.3    0.9342 0.44 0.5312 
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1 1 0.1 0.1 0.1 0.1 1 1 0.9342 0.4940 0.3266 

     0.2   0.9342 0.4773 0.0693 

     0.3   0.9342 0.4613 0.1628 

1 1 0.1 0.1 0.1 0.1 1 1 0.9342 0.4940 0.3266 

      2  0.9342 0.484 0.7139 

      3  0.9342 0.4793 1.0012 

1 1 0.1 0.1 0.1 0.1 1 1 0.9342 0.4940 0.3266 

       2 1.0787 0.4794 0.3020 

       3 1.1482 0.4729 0.2922 

 

Fig.2. Effect of magnetic parameter M on velocity profile. 

 

Fig.3 Effect of Velocity ratio parameter λ  on velocity profile. 

 when Pr = Ec =M=Le=1 ;Nb = Nt=0.1 and β=0.5 

 

Fig.4 Effect of casson parameter β   on  velocity profile. 
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Fig.5 Effect of casson  parameter β on temperature profile. 

 

Fig.6 Effect of  Nb on temperature profile. 

 

Fig.7 Effect of Nb on concentration profile. 

 

Fig.8 Effect of Nt on temperature profile. 
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Fig.9 Effect of Nt on concentration profile. 

 

Fig,10 Effect of Eckert number Ec on Temperature profile. 

 

Fig.11 Effect of Prandtl number  Pr on Temperature profile. 

  

 

 

 

 

            

 

Fig.12 Effect of Lewis number Le on concentration profile. 
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Fig 2.shows the effect of magnetic parameter M on the velocity graph for various 

values of      M .The presence of transverse magnetic field sets in Lorentz force which 

results in retarding force on the velocity field .Therefore as the values of M  increase 

,so does the retarding force and hence the velocity decrease when λ = 0.2.The flow 

has boundary layer structure and the boundary layer thickness decreases as the values 

of M increase. Fig 3.shows the  effect of velocity ratio parameter on the velocity 

graph. When the velocity  of stretching sheet exceeds the free stream velocity (i.e.   λ  

= b/a <1), the velocity of the fluid and boundary thickness increase with an increase in 

λ. When the free stream velocity exceeds the velocity of stretching sheet (i.e 

λ=b/a>1), in this case the flow velocity increases and the boundary layer thickness 

decreases with an increase in λ. When the velocity of stretching sheet is equal to the 

free stream velocity, there is no boundary layer thickness of Casson nanofluid near the 

sheet. 

Fig 4 and Fig 5.shows the effect of casson parameter (β) on velocity and temperature  

graphs for different values of β.    It is observed that for increasing values of β the 

velocity profile decreases .Due to increase of β,the yield stress  py  reduces and hence 

the momentum boundary layer thickness decreases.  

 

Fig.6  the usual decay occurs to the temperature profiles for all values of Nb 

considered, and the thermal boundary layer thickness increases rapidly for large 

values of Nb. It is observed that the effect of Nb on the nanoparticle concentration 

profile  ϕ(ɳ)  is in the opposite manner to that of temperature  profiles θ(ɳ)  as 

illustrated in Fig. 7  It is apparent from  Figs. 6 and 7  that nanoparticle concentration 

is decreasing as Nb increasing. It seems that the Brownian motion acts to warm the 

fluid in the boundary layer and at the same time exacerbates particle 

deposition away from the fluid regime to the surface which resulting in a decrease of 

the nanoparticle concentration boundary layer thickness for both solutions.  

                                                                                                                                                

Figs. 8 and 9 present typical profiles for temperature  and concentration  for various  

values of thermophoresis parameter (Nt). It is observed that an increase in the 

thermophoresis parameter (Nt) leads to increase in both fluid temperature and 

nanoparticle concentration. Thermophoresis serves to warm the boundary layer for 

low values of Prandtl number (Pr) and Lewis number (Le). So, we can interpret that 

the rate of heat transfer and mass transfer decrease with increase in Nt. Fig 10 shows 

that the effect of Eckert number on temperature profile .temperature increase with an 

increase in  Eckert number. The viscous dissipation produces heat due to drag 

between the fluid particles and this extra heat causes an increase of the initial fluid 

temperature .  

                                                                                                                                                                      

The effect of Prandtl number Pr on the heat transfer process is shown by the Fig.11. 

This figure reveals that an increase in Prandtl number (Pr ) results in a decrease in the 

temperature distribution,  because, thermal boundary layer thickness decreases with 

an increase in Prandtl number (Pr). In short, an increase in the Prandtl number means 

slow rate of thermal diffusion. The graph als shows that as the values of Prandtl 
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number Pr increase, the wall  temperature decreases. The effect of Prandtl on a 

nanofluid is similar to what has already been observed in common fluids qualitatively 

but they are different quantitatively. Therefore, these properties are inherited by 

nanofluids. Fig12 show the effect of Lewis number(Le) on concentration graph.The 

thickness of the boundary layer decrease with an increase in Le.    
 

 Table III: shows the variation of Skin friction coefficient )0(f   , Nusselt number

)0(  and Sherwood number )0(
 for various values of parameters 

,,,Pr,, NtNbLeM  andEc, . Nusselt number & Sherwood number are generally 

used as the heat transfer rate and mass transfer rate at the surface of stretching sheet 

respectively. Skin friction coefficient values increases with the values of magnetic 

parameter, lewis number and casson  parameter.Nusselt number increases with an 

increase in prandtl number , velocity ratio parameter  and  decreases in M,Nb,Nt,Le,β 

and Ec.sherwood number values are increase with an increase in Nb,Nt,λ and Le. 

 

 

4. CONCLUSIONS: 

In the present numerical study, MHD stagnation point flow over a linear stretching 

sheet with the effet of viscous dissipation. The governing partial differential equations 

are transformed into ordinary differential equations by using a similarity 

transformations ,which are then solved numerically using implicit finite difference 

method .the effect of various governing parameters namely magnetic parameter, 

velocity ratio  parameter, Eckert number , casson  parameter ,Brownian motion 

parameter, thermophoresis parameter, Prandtl number and Lewis number on the 

velocity ,temperature and concentration profile are shown graphically, presented and 

discussed.  Numerical results for the skin friction, local Nussselt number and local 

Sherwood number are presented in tabular form. The main observation of the present 

study is as follows.  

 Nusselt number increase when Pr and λ increase while Nusselt number 

decrease when MandLeEcNtNb ,,,,  increase. 

 Sherwood number increases when andEcLeNbNt ,,, increase, while 

decrease when MandPr  increase. 

 Skin friction coefficient increase when andM , increase. 

  Temperature profile increases with increase the values of EcandNbNt, . 

 concentration  profile decreases when the values of NbandLe  increase.   

  velocity profile decreases when andM increase. 
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